笔尖、尺子、桌面和房间有什么区别?
我们坐在3维的屋子里,在2维的桌面上学习、办公,沿着1维的尺子丈量物体,用0维的笔尖书写——“维度”看起来如此寻常易懂。然而,数学家们却并不这么认为。一代代的数学家在问题与矛盾中不断地思索、辩证,希望能够给出确切的答案:维度到底是什么?点、线、面、体之间,有什么样的联系和本质的区别?
撰文 | 戴维·S。里奇森(David S。 Richeson)
翻译 | 李诗源
审校 | 王昱
乍一看,“维度”(dimension)的概念似乎很直观。古人便已知道我们生活在3维空间中。亚里士多德曾在著作里表示:“可以在1个方向上表征大小的(形状)是一条线,2个方向的是一个平面,而3个方向的则是一个体。除此之外,没有别的可以表征大小的情形存在,因为只存在上述的这些维度。”
但是,随后我们就会意识到,给“维度”这个概念下一个详尽的定义并推广到一般情形,是极为困难的。数百年来,人们进行了大量的思想实验,通过想象来进行类比,才让我们如今能对这一概念有较为严格的解释。
不过,数学家等群体一直很享受构想更多维度,做一些脑力锻炼。如果第4个维度以某种方式与我们的3维空间垂直,那会是什么样的?
脑力游戏
一种很常用的方法是,假设我们的可知宇宙是3维空间中的一个2维平面。在这个平面上方,飘浮着一个我们看不见的实心球体。但如果这个球体掉落并接触到平面,就会产生一个点。随着球体继续穿过平面,交界处会产生一个圆盘,并且逐渐增大,直到达到最大大小。随后,圆盘逐渐缩小,最终彻底消失。我们正是通过这些截面,看到了3维的图形。
以此类推,如果一个4维球体穿过我们所熟悉的3维宇宙,那么首先会出现一个点,然后这个点变成一个先增大后缩小的球体,直至消失。这让我们对4维的图形有了一点概念,但还有其他方法可以想象这些图形。
比方说,让我们试着在4维空间中构建一个立方体的等价物体,即超立方体(tesseract)。如果一开始有一个点,我们可以把这个点沿着一个方向进行“扫描”,这样就得到了一条线段;将这条线段沿着与之垂直的方向“扫描”,可以得到一个正方形;以此类推,我们可以得到一个3维的立方体和一个4维的超立方体。
综合以上的内容,我们可以直观地认为,如果一个抽象空间内有n个自由度,或者是空间中一个点的位置需要n个坐标来描述,那么这个空间就是n维的。不过,数学家们发现维度的概念比这些简化的描述更为复杂。
看似简单,实则复杂
对高维空间的正式研究始于19世纪。在几十年内,这一领域就变得极为复杂。1911年的一部著作,著录了1832篇与n维空间的几何学有关的参考文献。在19世纪末至20世纪初,公众变得对“第4维”极为痴狂。1884年,埃德温·阿博特(Edwin Abbott)撰写了讽刺小说《平面国》(Flatland),日后大受欢迎。书中描绘了2维生命遇见来自第3维度的生命的场景,用这一类比来帮助读者们理解第4个维度。1909年,《科学美国人》(Scientific American)杂志举办了“什么是第4维?”主题征文比赛,奖金为500美元,共收到245份参赛作品。而巴勃罗·毕加索(Pablo Picasso)、马塞尔·杜尚(Marcel Duchamp)等许多艺术家,都曾在作品中融入“第4维”的概念。
但是在这一时期,数学家们意识到,缺少对维度的正式定义确实是一个问题。
格奥尔格·康托尔(Georg Cantor)最著名的发现是不同无限集合的大小是不一样的,或者说有不一样的势(cardinality)。起初,康托尔认为一条线段、一个正方形和一个立方体中的点集必然有不同的势,就像包含10个点的线段、10×10的网格点阵和10×10×10的立方体点阵包含的点数量不同一样。然而,1877年,他发现线段和正方形中的点存在一一对应关系(对所有维度的立方体也可以依此类推),表明它们有相同的势。于是他证明了一个直观的结论:尽管线、正方形和立方体的维度不同,但它们由同样数量的极小的点构成。
康托尔意识到,这一发现对“n维空间需要n个坐标来描述”这一直观的想法产生了冲击。这是因为n维立方体中的每一个点都可以唯一地被一个区间内的一个数所标识,因而在某种意义上,这些高维的立方体与1维的线段是等价的。然而里夏德·狄德金(Richard Dedekind)指出,康托尔所构造的函数是高度不连续的,它实际上是把一条线段拆分为无穷多个部分,然后重新拼装成一个立方体。但是,坐标系的构建不应当包含这种行为;这种方式过于混乱,就像给纽约曼哈顿的所有建筑一个唯一的地址,但这些地址和每一栋建筑之间的匹配却是随机的。
1890年,朱塞佩·皮亚诺(Giuseppe Peano)发现,1维曲线可以被紧凑且连续地“折叠”起来,并填满2维正方形内的每一个点。不过,他构造的曲线会与自身相交无穷多次。如果再用曼哈顿作类比的话,这就像有一部分建筑有多个地址。
戴维·希尔伯特(David Hilbert)构想的空间填充曲线。构建它需要循环进行5个步骤,在每一步中曲线的面积都是0,但在极限情况下,曲线便能填满正方形。
这些例子表明,数学家们需要证明“维度”是一种真实存在的概念;例如,当n≠m时,n维和m维欧氏空间之间存在着某些根本的差异。这一目标后来演变成对“维度不变性”(invariance of dimension)问题的研究。
从高维空间到海岸线
在康托尔的发现之后将近半个世纪内,许多数学家都尝试证明维度不变性,但都铩羽而归。最终,在1912年时,卢伊兹·布劳威尔(L.E.J。 Brouwer)应用自己发明的新方法,终于获得了成功。本质上说,他证明了不可能在既不将物体分割成许多部分(如康托尔的方法),又不让物体与自身相交(如皮亚诺的方法)的情况下,将一个高维物体放到一个维度较低的物体内,或是用一个低维物体完全填充一个维度较高的物体。同一时期,布劳威尔和其他数学家还给出了多项严格的数学定义。例如,其中一项定义以“n维空间中的球体的边界是n-1维的”为基础,用归纳法规定了不同的几何图形的“维度”。
尽管布劳威尔的工作给“维度”的概念奠定了坚实的数学基础,但它们并不能帮助人们直观地理解高维空间,因为我们对3维空间过于熟悉,往往会被误导。
例如,假设我们要把2^n个半径为1的球体放到一个边长为4的n维立方体里,然后在中心再放一个球,使之与其他球体全都相切。中心球体的半径为n1/2-1,随着n的增大而增大。于是,这会导致一个非常令人震惊的结果:当n≥10时,这个球体就会超出立方体的边。
对维度的探索并未止于布劳威尔的发现。短短几年后,费利克斯·豪斯多夫(Felix Hausdorff)提出了维度的一种定义。几十年后,人们意识到这一定义对于现代数学是必需的。有一种方法可以帮助我们直观地理解其定义:如果把一个d维的物体均匀地放大为原来的k倍,那么这个物体的大小就会变为原来的kd倍。例如,如果我们把一条线段、一个正方形和一个立方体放大为原来的3倍,那么点的大小不会改变(30=1),而线段长度、正方形的大小和立方体的大小分别变为原来的3、9和27倍。
根据豪斯多夫的定义,我们会得到一个意外的结果:物体的维度可以不是整数。几十年后,这恰恰为贝努瓦·B。曼德尔布罗(Benoit B。 Mandelbrot)的问题给出了答案。当时,曼德尔布罗正思考大不列颠岛的海岸线有多长。海岸线可能会相当参差不齐,无法用尺子精确地测量其长度——尺子越短,测量越精确,但同时测量的工程也会越浩大。曼德尔布罗认为,豪斯多夫的维度定义提供了一种量化海岸线“粗糙度”(jaggedness)的方法。1975年,他造出了“分形”(fractal)这个术语来描述这类复杂的无穷图形。
我们可以以科赫曲线(Koch curve)为例,来理解非整数维度可能是什么样的。科赫曲线是用迭代的方法生成的。起初我们有一条线段;每一步,我们要把每条线段的中间1/3去掉,用2条和去掉的线段长度相同的线段来代替。重复这一过程无穷多次,就得到了科赫曲线。如果将曲线放大,你会发现它包含4个部分,每个部分都和整条曲线(形状)相同,但大小只有后者的1/3。所以,如果把曲线放大为原来的3倍,我们就得到了4条和原曲线相同的曲线。因而这条曲线的豪斯多夫维度d满足3d=4,所以d=log34≈1.26。这条曲线不能像皮亚诺的曲线那样填满整个空间,所以它不算是2维的,但又比一条单纯的1维的线要复杂。
3维之外
可能有的读者会疑惑:“难道第4维不是时间吗?”1895年,赫伯特·韦尔斯(H.G。 Wells)发表了小说《时间机器》(The Time Machine)。正如小说中的发明家所说,“除了我们的意识沿着时间流动以外,时间和3维空间的任一个维度并无区别。”1919年发生的一场日食,使科学家们得以确认爱因斯坦的广义相对论,也印证了赫尔曼·闵可夫斯基(Hermann Minkowski)的预测:“从此以后,独立的空间和独立的时间注定将不复存在,只有某种将二者结合的形式可以将独立的现实保存下来。”
如今,数学家和其他领域的研究者,常常进行我们熟悉的3维空间以外的研究。有时这些研究会涉及额外的物理维度(如弦论就需要这些维度),但更多的时候,我们会进行抽象的工作,不会构想真实的空间。几何学的研究可能涉及高维空间,而物理、生物、工程、金融和图像处理等领域有时会研究分形,需要用到非整数维度。
幸运的是,要想享受维度的乐趣,并不需要对它有充分的理解——这一点,鸟儿和数学家们都一样。
原文链接:
https://www.quantamagazine.org/a-mathematicians-guided-tour-through-high-dimensions-20210913/
网友评论